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Abstract. The electronic and magnetic properties of clusters are investigated in the framework of the Hub-
bard model by treating electron correlations effects in a saddle-point slave-boson approximation. The size
dependent single-particle spectrum is calculated using a third moment real-space expansion of the local
density of states. Results for the magnetic moments, magnetic order, average number of double occupa-
tions and hopping renormalizations are given as a function of the local coordination number z, for different
representative values of the Coulomb interaction strength U/t and band filling n. Several transitions be-
tween paramagnetic, ferromagnetic and antiferromagnetic behaviors are obtained as a function of z. The
environment dependence of the magnetic behavior and of the degree of electron delocalization is analyzed.
Advantages and limitations of the present approach are discussed.

PACS. 36.40.Cg Electronic and magnetic properties of clusters – 71.24.+q Electronic structure of clusters
and nanoparticles – 75.10.Lp Band and itinerant models

1 Introduction

Clusters, nanoparticles and the macroscopic structures
made out of them, constitute one the most active research
fields in solid-state physics and materials science. One of
the main characteristics of these systems is the presence
of surfaces or interfaces which restrict the propagation of
particles and elementary excitations thus reducing the ac-
cessible dimensions. Different physical situations are found
between the atom on the one side (dimension zero) and
the periodic solid on the other (dimension three). As rep-
resentative examples let us mention free clusters, small
particles, chains and quasi one-dimensional systems, over-
layer structures on surfaces, thin films and granular ma-
terials. The differences in morphology and composition
among these systems yield a diversity of specific behav-
iors which are not only important from a fundamental
point of view but which may also lead to novel technolog-
ical applications [1]. Consequently, investigations of the
relation between local atomic environment and electronic
properties are of considerable interest.

One of the most challenging problems in this con-
text is magnetism, specially when it derives from itinerant
electrons like the d-electrons in transition metals (TM’s).
Indeed, a large number of experimental and theoretical
works have shown that the magnetic behavior of itinerant
electrons depends very strongly on the system size and
on the local environment of the atoms. Consider, for in-
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stance, the enhancement of the local magnetic moments
at Fe atoms as their local coordination number is reduced
(e.g., in thin films, near surfaces and in small clusters [2–
5]) or the onset of magnetism in small clusters of 4d TM’s
which are non-magnetic in the solid (e.g., RhN [6]). In
these cases, the magnetic behavior also depends sensitively
on structure. Self-consistent tight-binding calculations on
Fe clusters yield ferromagnetic order if the structure is bcc-
like while for fcc-like clusters antiferromagnetic-like order
is obtained [4]. Exact diagonalization studies of the Hub-
bard model have also revealed a similar strong structural
dependence of the magnetic properties of both ground-
state and low-lying excited-states [7]. From a microscopic
point of view, these remarkable properties are the result
of a delicate balance between the effect of hybridizations,
which favor equal filling of spin states, and the effect of
Coulomb interactions, which according to Hund’s rules fa-
vor the formation of local magnetic moments. Electron de-
localization tends to reduce the ground-state kinetic en-
ergy EK , but at the same time it also involves local charge
fluctuations which increase the Coulomb-interaction en-
ergy EC . The interplay between EK and EC introduces
correlations in the electronic motion, which play a central
role in determining the magnetic properties. Electron cor-
relation effects are expected to become more important as
the cluster size is reduced, since EK decreases with de-
creasing coordination number z and since the reduction
of z should also hinder the backflow of density excitations
responsible for dynamic screening of charge fluctuations.
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It is therefore important to understand how the electronic
and magnetic properties depend on the system size and
on the local atomic environment. One of the purposes of
this paper is to study this problem from a local point of
view in the framework of the Hubbard model.

An exact solution of the Hubbard Hamiltonian is
not available except for some particular mostly periodic
cases [8] and for finite systems containing a rather small
number of sites [7]. Even if the exact solution for arbi-
trary structures would be achievable, the enormous variety
of behaviors that would result as a function of structure,
size and system dimensions would be overwhelming (see
for instance Ref. [7]). Therefore, it should be very difficult
to extract simple qualitative trends as a function of a few
relevant variables characterizing the size-dependent local
atomic environment. A simplified treatment of electronic
correlations and local environment seems both unavoid-
able and physically interesting on its own. In this paper
we present an approach which emphasizes the role of the
immediate local environment of the atoms. The point of
view is somehow complementary to that adopted in previ-
ous studies on small clusters where cluster structure and
electron correlations were treated exactly [7]. Rather than
a detailed determination of the magnetic behavior of spe-
cific structures, in the present work we aim to determine
the effects of the changes in the local coordination number
z without incorporating structure specific contributions
explicitly. In this way, a more simple and general physical
picture is achieved by treating the size dependence of the
single-particle spectrum and electron correlations from a
local point of view. In addition, such local approaches are
also interesting since they stress similarities between finite
clusters and extended low-dimensional systems which are
related to the reduction of z.

The reminder of the paper is organized as follows. Sec-
tion 2 presents the theoretical approach, which is based
on the application of slave-boson methods to the Hub-
bard Hamiltonian and a real-space expansion of the local
density of states. Results for the electronic and magnetic
properties of clusters as a function of the local coordina-
tion number z are presented and discussed in Section 3
(e.g., magnetic-phase diagram, local magnetic moments,
magnetic order, average number of double occupations).
Finally, we conclude in Section 4 by pointing out limita-
tions of the present approach as well as some perspectives
of future extensions.

2 Theoretical approach

In order to determine the electronic and mag-
netic properties of clusters, we consider the Hubbard
Hamiltonian [9]

H = − t
∑
〈i,j〉,σ

ĉ†iσ ĉjσ + U
∑
i

n̂i↑ n̂i↓ , (1)

where ĉ†iσ, (ĉiσ) refers to the electron creation (annihila-

tion) operator at site i and spin σ, and n̂iσ = ĉ†iσ ĉiσ is

the corresponding number operator. The hopping integral
between nearest neighbor (NN) sites i and j is denoted
by t and the on-site Coulomb repulsion by U . The present
single-band version of this model is certainly too over-
simplified for describing accurately real systems in gen-
eral. Successful applications to specific systems have been
made in the case of low-energy properties of simple-metal
clusters [10–12]. However, in spite of its simplicity, equa-
tion (1) can be considered as a minimum model for corre-
lated itinerant electrons, since it includes the fundamen-
tal interplay between electron delocalization, described by
the first term, and the Coulomb repulsion energy associ-
ated to local charge fluctuations, described by the second
term. It is our purpose, to use the Hubbard model in or-
der to investigate the magnetic behavior and the degree
of electron delocalization in clusters as a function of the
size-dependent local environment.

The electronic correlations are taken into account us-
ing the slave-bosons method proposed by Kotliar and
Ruckenstein [13], which has been applied to a variety of
periodic systems [14–23] and also to the van der Waals
to metal transition in Hg clusters [24]. In this scheme,
the representation of the many-body electronic states is
changed by introducing a set of four additional boson op-
erators at each site i, which keep trace of the state of occu-

pation of the site. The boson operators ê†i (êi), p̂
†
iσ (p̂iσ),

and d̂†i (d̂i) correspond to the creation (annihilation) of
an empty, singly occupied with spin σ or doubly occupied
state. In this enlarged Hilbert space only the states which
have consistent boson and fermion occupation numbers
have a physical sense. Therefore, the conditions

ê†i êi +
∑
σ

p̂†iσ p̂iσ + d̂†i d̂i = 1, (2)

and

p̂†iσ p̂iσ + d̂†i d̂i = n̂iσ (3)

have to be imposed. The form of any physical operator
in the new representation (with fermions and bosons) is
readily obtained once the transformation law for the ele-
mentary fermion operators is defined: ĉiσ → ĉiσ ẑiσ, where
ẑiσ is an operator acting only on the boson variables. An
appropriate choice for ẑiσ is [13,25]

ẑiσ= (1−d̂†i d̂i−p̂
†
iσp̂iσ)−1/2(ê†i p̂iσ+p̂†iσ̄d̂i)

× (1−ê†i êi−p̂
†
iσ̄p̂iσ̄)−1/2. (4)

In the saddle point approximation, the electronic proper-
ties are derived from an effective Hamiltonian

Ĥ ′ =
∑
iσ

ε′in̂iσ +
∑
i6=j

t′ijσ ĉ
†
iσ ĉjσ , (5)

which describes the electrons as if they were independent
(quasi) particles having shifted energy levels ε′iσ and renor-
malized hopping integrals t′ijσ = qσijtij , as a consequence
of Coulomb interactions and correlations. The hopping
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renormalization factor qσij = 〈ẑ†iσ ẑjσ〉 is given by

qσij =
(eipiσ + piσ̄di)(ejpjσ + pjσ̄dj)

[niσ(1− niσ)njσ(1− njσ)]
1
2

(6)

where ei, piσ and di refer to ground-state averages. Thus,
the hopping integrals are replaced by t′ijσ = qσijtij which
takes into account the tendency to electron localization
due to correlations. However, notice that in a real sys-
tem, the hoppings between two sites depend on the actual
many-body configuration of these sites (e.g., whether they
are empty, singly occupied, etc.). These more subtle corre-
lation effects are lost by the average over all configurations
due to the saddle-point approximation.

The actual T = 0 values of ei, piσ and di are deter-
mined by minimizing the electronic energy

E =
∑
iσ

∫ εF

−∞
(ε− ε′iσ) ρiσ(ε) dε+ U

∑
i

d2
i (7)

under the constraints (2) and (3). The first term in equa-
tion (7) represents the kinetic energy renormalized by
correlations, i.e., resulting from hopping integrals t′ijσ =
qσijtij . ρiσ(ε) = −(1/π) Im{Giσ,iσ(ε)} refers to the local

density of states (LDOS) [G(ε) = (ε−H ′)−1] and εF to the
Fermi energy. The second term represents the Coulomb
energy associated to local charge fluctuations, where d2

i is
the average double occupation at site i. Equation (7) re-
flects the competition between the increase of local charge
fluctuations when electrons delocalize and the localization
of the electrons when charge fluctuations are suppressed.

The environment dependence of the electronic proper-
ties enters into the calculation through the LDOS ρiσ(ε).
Since the energy and magnetic moments result from in-
tegrals of ρiσ(ε), one expects that in first approximation
these properties should not depend sensitively on the de-
tails of the LDOS [26]. Still, situations are known where
this is not the case and where a precise determination of
the DOS is crucial, as it will be discussed at the end of
Section 3. A systematic expansion of ρiσ(ε) which allows
to include the contributions to the LDOS from a local
point of view is provided by the Haydock-Heine-Kelly re-
cursion scheme [27]. In order to identify the leading contri-
butions of the local environment on the electronic correla-
tions and magnetic behavior we restrict the expansion up
to the third moment. Higher-moment terms would start
to depend on the details of the cluster structure beyond
the first NN shell. In the case of bipartite structures, with
sublattices denoted by A and B, the third moment ap-
proximation to ρiσ(ε) is given by

ρiσ(ε) =

(
biσ

π

) √
1−

(
ε−σ∆i/2

2biσ

)2

σ∆i(ε+ σ∆i/2) + b2iσ
, (8)

where b2iσ =
∑
j(q

σ
ijtij)

2 = z(qσt)2, ∆i = εA↑ − εB↓ = ∆

for i ∈ A and ∆i = εB↑ − εA↓ = −∆ for i ∈ B. Equa-
tion (8) corresponds to a density of states centered at

σ∆i/2 and having an effective band width 4biσ. For sim-
plicity we assume that the number of atoms in each sub-
lattice is the same (NA = NB = N/2) which implies that
zA = zB = z (NAzA = NBzB). This excludes the pos-
sibility of ferrimagnetic-like solutions resulting from dif-
ferent local band widths (zA 6= zB) and non-compensated
sublattice magnetizations [28]. The restriction to bipartite
structures leaves triangular loops and the resulting mag-
netic frustration effects out of the scope of this work. The
presence of triangular loops, as those often found in com-
pact clusters structures, would yield an asymmetry in the
single particle density of states even in paramagnetic or
ferromagnetic cases (i.e., for ∆ = 0). Their contribution,
which is proportional to t3 in the third moment expansion
could be easily taken into account by including the num-
ber of triangular loops per site as an additional parameter
characterizing the local environment.

The electronic energy E is minimized by considering
paramagnetic, ferromagnetic and anti-ferromagnetic solu-
tions taking the number of electrons ni = p2

i↑ + p2
i↓ + 2d2

i ,

the local magnetic moment µi = p2
i↑ − p

2
i↓ and the aver-

age double occupation d2
i as independent variables. More

complex magnetic structures such as ferrimagnetic solu-
tions or non-collinear spin arrangements have not been
considered. First, for each set of values of ni, µi and d2

i ,
the self-consistent equations

ni = 〈n̂i↑〉+ 〈n̂i↓〉, (9)

µi = 〈n̂i↑〉 − 〈n̂i↓〉 (10)

and

〈n̂iσ〉 =

∫ εF

−∞
ρiσ(ε) dε (11)

are solved in order to satisfy the constrains (2) and (3).
The electronic energy is then computed from equation (7)
and minimized with respect to ni, µi and d2

i . Phase bound-
aries are obtained by comparing the electronic energies.

3 Results and discussion

In this section we present and discuss results for several
electronic and magnetic properties of clusters as a function
of the local coordination number z. For periodic systems
it is straightforward to relate the system dimension with
z, once the lattice structure is given. For instance, z = 2
corresponds to the one-dimensional chain, z = 4 to the
two-dimensional square lattice and z = 6 to the three-
dimensional simple cubic lattice. For finite clusters, the
relation between z and the number of atoms N is in gen-
eral more complicated, since z changes as we move from
the interior to the surface of the cluster and also for dif-
ferent surface atoms. In fact, one would have to consider
at least two values of z: one for bulk-like atoms zb and
one for surface atoms zs. Within this simplified picture
the average coordination number z̄ is given by

z̄ = (zbNb + zsNs)/N ' zb − 4 N−1/3(zb − zs). (12)
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Fig. 1. Cluster-size dependence of the average coordination
number z̄ in simple cubic (sc) cubes, body centered cubic (bcc)
rhombododecahedra and face centered cubic (fcc) cuboocta-
hedra. The dots correspond to clusters having perfect com-
pact surfaces of only one type, namely, the most compact one:
(100)-like for sc, (110)-like for bcc and (111)-like for fcc. The
full curves show the large N limit z̄ = zb − 4N−1/3(zb − zs),
where N refers to the number of atoms and zb (zs) to the bulk
(surface) coordination number (see the appendix).

In more realistic situations the local coordinations of face,
corner and edge atoms have to be distinguished. The av-
erage coordination number is then given by

z̄ = (zbNb + zfNf + zcNc + zeNe)/N, (13)

where b, f , c, and e refer to bulk, face, corner and edge
atoms respectively (N = Nb + Nf + Nc + Ne). One may
consider for example clusters with simple cubic (sc), body
centered cubic (bcc) or face centered cubic (fcc) structures
having only the most compact surfaces, i.e., (100)-like for
sc, (110)-like for bcc and (111)-like for fcc. The expressions
for zi and Ni for these cases are given in the appendix.
The results for z̄ shown in Figure 1 as a function of N−1/3

illustrate how the local atomic environment changes as a
function of the number of atoms, for representative cubic
structures. One may also refer to this figure in order to
infer qualitatively the size dependence of the electronic
and magnetic properties, which in the following shall be
presented as a function of the local coordination number z.
Different values of z correspond to different atoms within
the cluster (bulk, face, corner, etc.) or to different cluster
structures (examples are given in the appendix).

In Figure 2 results are given for the magnetic phase
diagram of the Hubbard model as obtained using the
theoretical approach described in the previous section.
The ground-state magnetic order – for example, ferro-
magnetic (FM), antiferromagnetic (AF) or paramagnetic
(PM) – is given as a function of U/t, z and the num-
ber of electrons per site n. Since the Hubbard model
has electron-hole symmetry for bipartite structures, we
only show the results for n ≥ 1. Notice that W = 4t

√
z

represents the band width of the unrenormalized single-
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Fig. 2. Magnetic-phase diagram of the Hubbard model on bi-
partite structures (NA = NB = N/2) as obtained by using the
slave-boson mean-field approximation and the 3rd moment ex-
pansion of the local density of states. The ground-state mag-
netic order (ferromagnetic (FM), antiferromagnetic (AF) or
paramagnetic (PM)) corresponding to a Coulomb repulsion U ,
a band width W = 4t

√
z and a number of electrons per site n

is indicated. For n > 1.38 the solution is always PM.

particle LDOS. It is worth noting that, in spite of some
quantitative differences, there are several common features
between the present local approach and similar studies
of the periodic square and Bethe lattices [13–17]. Dif-
ferent behaviors may be distinguished. For small values
of U/W (0 ≤ U/W ≤ 0.5) PM order dominates for all
values of n. For U/W > 0.5 and close to half-band fill-
ing (1 ≤ n ≤ 1.05) we find AF order. Starting from the
strongly correlated limit and decreasing U/W we observe
that the AF region extends to larger values of n (from
n = 1.0 for U/W = ∞ to up n = 1.25 for U/W = 1.31).
A change of behavior is found for U/W < 1, where AF
order is displaced by the PM order. For n > 1.25, the
PM solution is always the most stable one irrespectively
of the values of U/W and z. Finally, for sufficiently large
U/W (U/W > 7) we find FM order. The FM region is lo-
cated between the AF and PM domains. Starting from a
point where all 3 phases have the same energy (n = 1.12,
U/W = 7.15) the range of electron densities where the
ferromagnetism dominates increases monotonically with
increasing U . In agreement with Nagaoka’s theorem [30],
the boundary between FM and AF regions includes the
point n = 1 and U/W = ∞. Notice that, in contrast to
Hartree-Fock results, the FM solution is less stable than
the PM one for n > 1.38, even if the Coulomb interac-
tion strength U/W is arbitrary large. This illustrates the
ability of saddle-point slave-boson approach to suppress
local charge fluctuations, an important feature in order to
determine the ground-state energy of low-spin states.

From the phase diagram shown in Figure 2, we may
infer the magnetic transitions which occur as a function
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of z for different values of U/t and n. Taking into account
that in clusters 1 ≤ z ≤ 12 and that the single-particle
band width is given by W = 4t

√
z, one finds the following

magnetic transitions as z increases:

i) from FM to AF order for 28.6 ≤ U/t ≤ +∞ and
1 < n ≤ 1.12,

ii) from FM to PM order for 28.6 ≤ U/t ≤ +∞ and
1.12 ≤ n ≤ 1.38,

iii) from AF to PM order for 2.13 ≤ U/t ≤ 8.24 and
1 ≤ n ≤ 1.12,

iv) from PM to AF order for 5.23 ≤ U/t ≤ 99.1 and
1.12 ≤ n ≤ 1.25,

v) a re-entrance of the type PM–AF–PM for 2.38 ≤
U/t ≤ 99.1 and 1.12 ≤ n ≤ 1.25 and

vi) a double transition of the type FM-PM-AF for 28.6 ≤
U/t ≤ 218.72 and 1.12 ≤ n ≤ 1.25.

In the following we discuss electronic and magnetic prop-
erties as a function of z, which are representative of most
of the previous cases and which reveal the physical behav-
ior within the different FM, AF and PM regimes.

One should keep in mind that in finite systems there
are no true long-range phase transitions. Nevertheless and
in spite of the fact that the wave function of each many-
body eigenstate depends continuously on Hamiltonian pa-
rameters, level crossings may occur which often lead to
discontinuous changes of the magnetic behavior as a func-
tion of U/t. The results of Ishii and Sugano for a rhom-
bohedral 4-atom cluster [31] are a particularly illustrative
example in the context of cluster magnetism and the Hub-
bard model. In this case one observes a discontinuity in
the ground-state wave function, in the average of double
occupations and in the spin correlations as a function of
U/t, which has been interpreted as a transition from PM
to AF like behavior at U/t = 2.8 (half band filling). The
NN spin correlation functions allow to discern between
AF-like and non-correlated PM-like ground states even if
the total spin S is in both cases minimal (S = 0). The
saddle-point approximation mimics the onset of AF NN
correlations by the formation of local magnetic moments
with AF order. It is in this sense that broken-symmetry
spin-density-wave states are to be interpreted in finite sys-
tems.

In the Figures 3 and 4 results are given for (a) the
U/t–z magnetic phase diagram, (b) the local magnetic mo-
ments µ, (c) the average number of double occupations d2

and (d) the hopping renormalization factor qσ = t′/t. In
the half-filled-band case we may observe that the critical
coordination number zc at which the AF-PM transition
occurs depends very strongly on U/t. z varies from zc = 1,
for U/t = 2.13, to zc = 12, for U/t = 7.4. This implies
that the onset of antiferromagnetism, which occurs as z
decreases, depends strongly on the considered element and
on the inter-atomic distance R (e.g., t ∼ R−5 in TM’s).
For larger values of U/t, AF order always dominates as
also found in exact diagonalization studies on small clus-
ters [31]. Notice in Figure 3b the onset and increase of
the magnetic moments as the cluster size decreases. The
enhancement of µ is qualitatively in agreement with re-
alistic spd-band Hartree-Fock calculations on Cr clusters
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Fig. 3. Electronic and magnetic ground-state properties of the
Hubbard model on bipartite structures (NA = NB = N/2) as
obtained by using the slave-boson mean-field approximation
and the 3rd moment expansion of the local density of states.
Results are given for half-band filling (n = 1) as a function
of the local coordination number z: (a) U/t-z magnetic-phase
diagram, (b) average local magnetic moment µ, (c) average
double occupation d2 and (d) hopping renormalization factor
qσ (q↑ = q↓ for PM and AF order). In (b), (c) and (d) different
values of the Coulomb repulsion U/t are considered: U/t = 5
(dashed curves), U/t = 7 (full curves) and U/t = 10 (dashed-
dotted curves).

and surfaces [4,32]. Figures 3c and 3d illustrate the inter-
play between electron delocalization and Coulomb-energy
fluctuations. As z decreases the gain in kinetic energy as-
sociated to band formation decreases. The electrons tend
to be more localized and therefore the average number of
double occupations d2 decreases (see Fig. 3c). A remark-
able change of behavior is found at the PM to AF tran-
sition (zc = 5.5 for U/t = 5 and zc = 10.7 for U/t = 7).
Starting from z = 12 in the PM state and decreasing z,
we first observe that the kinetic energy is strongly renor-
malized in order to suppress charge fluctuations (q = t′/t
decreases strongly). However, in spite of this important
reduction of q, the double occupations are not very effi-
ciently reduced since d2 decreases rather slowly (compare
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Fig. 4. Electronic and magnetic ground-state properties of the
Hubbard model on bipartite structures (NA = NB = N/2).
Results are given as in Figure 3 for a band-filling n = 1.2
and for U/t = 7 (full curves), U/t = 35 (dashed curves) and
U/t = 90 (dashed-dotted curves). Notice that in the FM case
q↑ < q↓ (e.g., for U/t = 90 and z < 3.8).

Figs. 3c and 3d for z > zc). Consequently, when q reaches
a critical value (q ' 0.90) it is more efficient to develop lo-
cal magnetic moments and to reduce d2 by separating the
up and down electron-densities in space (i.e., AF order). A
rapid increase of µ follows together with a rapid decrease
of d2 (Figs. 3b and 3c). Now, the kinetic energy does not
need to be further renormalized since the reduction of d2

is taken over by the formation of local moments in a sim-
ilar way as in the Hartree-Fock approximation. In fact q
increases together with µ as z decreases. The AF behavior
contrasts with the PM one. Following the PM solution for
z < zc, one observes that q continues to decrease and even-
tually vanishes at given value of z (qPM = 0 for z ≤ 0.54
and U/t = 5; qPM = 0 for z ≤ 1.06 and U/t = 7). At this
point also d2 and the electronic energy vanish. While the
localization is never complete in the AF case (d2 > 0), the
reduction of d2 can be very important when the system
dimensions are very small (e.g., d2 =0.01–0.04 for z ' 1–2
and U/t =5–10). This is qualitatively in agreement with
exact diagonalization results [7]. Finally, notice that in the

purely AF regime, for example for U/t = 10, µ, d2 and q
depend weakly on z.

In Figure 4 results are given for n = 1.2. For U/t = 7
we observe a transition from PM to AF order as z de-
creases, which is qualitatively similar to the one previously
discussed for n = 1 (Fig. 3). Notice, however, the reduc-
tion of zc and of the magnetic moment µ as we go from
n = 1 to n = 1.2, e.g., zc(n = 1, U/t = 7) = 10.7 and
µ(n = 1, z = 1) = 0.96 while zc(n = 1.2, U/t = 7) = 5.3
and µ(n = 1.2, z = 1) = 0.56. This reflects the decreas-
ing stability of the AF solution as we move away from
half-band filling. Nevertheless, as in the n = 1 case, the
magnetic moments µ are enhanced as the cluster size de-
creases. In contrast the hopping renormalization factor q
now decreases slowly with decreasing z (compare Figs. 4b
and 4c with Figs. 3b and 3c). As the coordination number
is reduced, the average double occupations d2 are sup-
pressed more rapidly in AF state than in the PM state.
This agrees with the results for n = 1 although the differ-
ence between the slops ∂d2/∂z in the AF and PM solu-
tions is much less important in the present case. In other
words, the suppression of double occupations becomes less
efficient in the AF state as n moves away from half-band
filling.

For larger values of U/t a qualitatively different behav-
ior is found as a function of z. For example, for U/t = 35
we obtain AF order in the bulk (z = 12) with unsat-
urated magnetic moments µ = 0.5 and a considerably
renormalized kinetic energy (q ' 0.56). Remarkably, µ
now decreases with decreasing z. This is a consequence
of the increasing stability of the PM state and the result-
ing PM-AF transition which occurs at z ' 8.4. At these
values of U/t the double occupations are reduced almost
to the minimum possible value d2

min = n − 1 already for
z = 12 (n ≥ 1). Therefore, reducing the cluster size has
little influence on d2, which decreases only very weakly as
z decreases (see Fig. 4c). At even larger values of U/t we
observe PM to FM transitions. The critical coordination
number zc, below which FM sets in, increases with increas-
ing U/t. The same holds for the magnetic moments µ in
qualitatively agreement with Hartree-Fock d-band model
calculations [4]. In Figure 4 results are shown for U/t = 90.
Notice the rapid increase of µ for z < zc, which approaches
its saturation value µsat = 2 − n for z → 1. In contrast,
d2 is unaffected by the transition since already for z > zc
(in the PM regime) d2 is very close to the minimum value
d2
min = n − 1. The hopping renormalization factors qσ

also show a remarkable dependence as a function of z. In
the PM solution qσ is nearly independent of z and it is
of course the same for both spins. As the magnetic mo-
ment develops (z < zc) the majority and minority spins
renormalization factors q↑ and q↓, split. q↓ increases with
µ and eventually tends to 1 when µ→ 2− n. The minor-
ity electrons give the dominant contribution to the kinetic
energy EK . In contrast, q↑ decreases as µ increases and
the majority-electron contribution toEK becomes less and
less important as the up band tends to be completely filled
(n↑ → 1 as z → 1 for n > 1).
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It is also interesting to compare our local-approach
with previous calculations on periodic infinite systems
in which rectangular, elliptical or Bethe-lattice single-
particle densities of states were used [13–17]. As already
pointed out, the topology of our phase diagram for a fixed
z (e.g., z = 4) is similar to that reported in references
[13–17] in the most relevant large U/t regime. However,
some quantitative differences in the position of the phase
boundaries are present. In particular the behavior for
U → 0 and n = 1 deserves a more detailed analysis. While
our calculations yield a transition from PM to AF order
at a finite value of U/t, in references [13–17] AF sets in
already for arbitrary small U/t > 0. In order to under-
stand this discrepancy, notice that in the present local
approach one cannot distinguish between a true bipartite
structure and a structure which is bipartite only locally
around site i. As a consequence no gap opens at εF = 0 in
the third moment ρiσ(ε) for arbitrary small ∆ > 0. In
contrast, references [13–17] considered infinite bipartite
structures (square and Bethe lattices) for which perfect
nesting ensures the existence of a finite gap at εF = 0
for any ∆ (Ek =

√
ε2
k +∆2) thus stabilizing the AF so-

lution at arbitrary small U/t [33]. To further investigate
this problem we have also performed calculations on fi-
nite rings with L sites using the saddle-point slave-boson
approximation and calculating the DOS exactly (no 3rd
moment approximation). For half-band filling one obtains
AF order for all U > 0 if L = 4m with m integer, since the
highest occupied molecular orbital (HOMO) and the low-
est unoccupied molecular orbital (LUMO) are degenerate
(εHOMO = εLUMO = 0). In contrast, AF sets in only at
a finite U if L = 2(2m + 1) since εLUMO − εHOMO > 0
(Uc/t = 2.3, 1.9 and 1.3 for L = 18, 30 and 110 respec-
tively [34]). These results show that in finite bipartite clus-
ters both behaviors are possible.

4 Summary

The magnetic and electronic properties of clusters have
been investigated in the framework of the Hubbard model.
The interplay between correlations, delocalization and
magnetism was taken into account within a saddle-point
slave-boson approach. The environment dependence of the
single-particle electronic structure was calculated by us-
ing a simple third moment real-space expansion of the lo-
cal density of states, which allows to relate the electronic
properties to the local coordination number z. Within this
scheme a variety of magnetic transitions have been ob-
tained as a function of z, the Coulomb interaction strength
U/t and the band filling n. The resulting changes in prop-
erties such as the magnetic moment, the average number
of double occupations and the renormalization of the ki-
netic energy have been analyzed in some detail, in particu-
lar concerning the effects of the reduction of coordination
and system size on the electronic correlations.

The present work incorporates electron correlation ef-
fects and charge fluctuations beyond most previous mean-
field studies on clusters. However, the approximations

used for calculating the single-particle DOS have pre-
cluded us from addressing some important aspects of the
problem of electronic correlations and magnetism in clus-
ters. For example, non-bipartite structures and the associ-
ated magnetic frustration effects are of considerable inter-
est and would deserve to be studied in detail. Moreover,
it is well known that the magnetic properties of itinerant
electrons often depend on details of the geometry of the
cluster. Therefore, for a quantitative description of specific
systems, a precise account of the local atomic environ-
ment (e.g., by expanding the local Green’s functions well
beyond the 3rd moment approximation) would be neces-
sary. This would of course require a complete knowledge
of the system structure and would deprive the calcula-
tions from the general character adopted in this paper. In
any case, in view of the impossibility of performing exact
calculations on large clusters or extended low-dimensional
systems, the coordination number dependence of magnetic
moments and magnetic order reported in this work should
provide useful information on the qualitative trends to be
expected.

This work was financed in part by CONACyT (Mexico) and
CNRS (France).

Appendix

Let ν denote the number of shells surrounding a central
atom. The number of cluster atoms N(ν) for the sc-, bcc-
and fcc-like structures are then given by

Nsc = 8ν3 + 12ν2 + 6ν + 1, (A.1)

Nbcc = 4ν3 + 6ν2 + 4ν + 1 (A.2)

and

Nfcc =
16

3
ν3 + 8ν2 +

14

3
ν + 1. (A.3)

The expressions for the number of bulk, face, edge and
corner atoms, Nb, Nf , Ne and Nc, and for the correspond-
ing local coordination numbers, zb, zf , ze and zc are the
following: For simple cubic cubes

Nb = 8ν3 − 12ν2 + 6ν − 1, zb = 6,

Nf = 24ν2 − 24ν + 6, zf = 5,

Ne = 24ν − 12, ze = 4,

Nc = 8, zc = 3;

(A.4)

for bcc rhombododecahedra

Nb = 4ν3 − 6ν2 + 4ν − 1, zb = 8,

Nf = 12ν2 − 24ν + 12, zf = 6,

Ne = 24ν − 24, ze = 5,

Nc = 14, zc = 4;

(A.5)
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and for fcc cubooctahedra

Nb = 16
3 ν

3 − 8ν2 + 14
3 ν − 1, zb = 12,

Nf = 16ν2 − 24ν + 12, zf = 9,

Ne = 24ν − 12, ze = 7,

Nc = 6, zc = 4.

(A.6)

The results shown in Figure 1 are derived by combining
equation (13) and equations (A.1–A.6).
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